US ERA ARCHIVE DOCUMENT

Cathodic Protection for On-Grade Storage Tanks and Buried Piping

John Fitzgerald Corrpro Freshwater Spills Symposium April 6-8, 2004

Why is Corrosion Control Important?

- Preserve Assets
- Reduce Maintenance Costs
- Governmental Compliance
- Preserve The Environment

What I Will Cover....

- Causes of Corrosion
- SPCC/State/OPS Regulations
- Cathodic Protection Applications
- Maintenance Requirements

Spill Prevention Control and Countermeasure (SPCC) Regulation (Implementation Required by 2/18/05)

- Provide buried piping that is installed or replaced after August 16th, 2002 with a protective coating and cathodic protection.
- Should a section of line be exposed for any reason it must be inspected for deterioration. If corrosion damage is found you must take additional examination and corrective action.

Federal Level (Breakout Tanks)

a) Relieves surges in a hazardous liquid pipeline system or b) receive and store hazardous liquid transported by a pipeline for reinjection and continued transportation by pipeline

THE CORROSION SOCIETY Breakout Tank Piping (DOT)

State Level

- Approximately 25% of States now require cathodic protection be installed and maintained on new, refurbished, or repaired tanks in contact with soil or sand foundations.
- A number of other states are in the process of implementing regulations governing AST's.

Terminal Tankage

Corrosion Can be Defined as Either:

Practical

Tendency of a Metal to Revert to its Native State

Scientific

Electrochemical Degradation of Metal as a Result of a Reaction with its Environment

Corrosion - A Natural Process

- 1) ANODE
- 2) CATHODE
- 3) ELECTROLYTE
- 4) ELECTRICAL CONNECTION

Corrosion of Metallic Structure

Corrosion Cell on Tank Bottom

Corrosion Caused by Poor Water Drainage

New Steel Coupled to Old Steel

New Bottom (Anode)

SAND

CURRENT FLOW

Old Bottom (Cathode)

SAND

Galvanic Anode Cathodic Protection

 Current is obtained from a metal of a higher energy level

PRACTICAL GALVANIC SERIES

Material	Potential*
Pure Magnesium	-1.75
Magnesium Alloy	-1.60
Zinc	-1.10
Aluminum Alloy	-1.00
Cadmium	-0.80
Mild Steel (New)	-0.70
Mild Steel (Old)	-0.50
Cast Iron	-0.50
Stainless Steel	-0.50 to + 0.10
Copper, Brass, Bronze	-0.20
Titanium	-0.20
Gold	+0.20
Carbon, Graphite, Coke	+0.30

^{*} Potentials With Respect to Saturated Cu-CuSO₄ Electrode

INSULATING UNIONS

FLANGE INSULATION KIT

Galvanic Anodes

- Typically limited to new piping, that has a good quality coating and electrical isolation.
- If the particular location is lacking any of the above, an impresses current system may be warranted.

Internal Corrosion Fuel Product Water / Sediment Cathode Anode

Internal Corrosion

Conventional CP Systems for AST's

- Shallow (Distributed) Anodes
- Deep Anode Groundbed

ANACEINTERNATIONAL

Impressed Current Transformer Rectifier Unit

Impressed Current System

Directional Boring Under Existing AST

New/Refurbished AST Bottoms with or without Secondary Containment

Secondary Containment

- Environmental Protection
- Minimize Liability
- State and Local Regulations

CP Installation on Double Bottom Tank

CP Installation on Rebottomed Tank

Maintenance of Cathodic Protection Systems

- Conduct Annual Testing
- Meet NACE Criteria/Standards
- Conduct Bi-Monthly Rectifier Checks
- NACE Qualified Technicians

NACE Cathodic Protection Criteria

- -850mV or more negative with current applied
- -850mV "Instant off"
- -100mV shift between "Instant off" and "Native"

Annual Cathodic Protection Survey

Rim Potential Measurements

	Rim	25'	Center	55'	Rim
On	-1411	-698	-404	-601	-1455
Off	-902	-664	-402	-578	-911

Potentials (mV)

Stray Current Monitoring Test Station

Pipeline

Reference Cells

Monitoring

- Record volts and amps every 30-60 days
- Compare values to target setting
- Conduct annual cp survey by NACE engineer
- Maintain cp records

Visual Check of Volts/Amps

Record Keeping

- Provides History
- Computer Records/Data Collection
 Remote Monitoring
 Hand Held Computers
 Close Interval Surveys
 Data Printouts
 Flagging of Problem Areas
 Prioritize Action Items
- As Built Drawings
- Store Data & Records for Life

System Characteristics

<u>Galvanic</u>

- No external power
- Fixed driving voltage
- Limited current
- Small current requirements
- Used in lower resistivity environment
- Usually negligible interference

Impressed

- External power required
- Voltage can be varied
- Current can be varied
- High current requirements
- Used in almost any resistivity environment
- Must consider interference with other structures

Recommended Practices

API-651 - Cathodic Protection of Aboveground Petroleum Storage Tanks:

"Galvanic anodes method is not practical for protection of large bare structures."

NACE RP0193-01 - External Cathodic Protection of On-Grade Metallic Storage Tanks:

"Galvanic protection systems can be applied to tank bottoms where the metallic surface area exposed to the electrolyte can be minimized through the application of a dielectric coating or the area is small due to the tank size or configuration."

Questions...